首页> 外文OA文献 >Residual-based variational multiscale modeling in a discontinuous Galerkin framework
【2h】

Residual-based variational multiscale modeling in a discontinuous Galerkin framework

机译:不连续Galerkin框架中基于残差的多尺度建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work the residual-based variational multiscale method is presented in a discontinuous Galerkin framework. This so-called ‘DG-RVMS’ strategy is developed, extensively verified, and tested on a more complex case.The proposed DG-RVMS paradigm consists of three principle components. First, the perelement weak form is coupled by manipulation of the fine scale element boundary terms. Next, a fine scale surface model is introduced to make the global coarse scale weak formulation well posed. Finally, the coarse scale jumps and residual can be leveraged to formulate a new volumetric fine scale model. This volumetric fine scale model incorporates the fine scale effects onto the coarse scale solution. The verification efforts will focus on a number of 1D test cases, concerning linear differential equations. In particular the Poisson equation and an advection-diffusion problem will be investigated. Within a controlled environment the finite element solution can be manipulated at will, by using explicit expressions for the fine scale terms. As an example the H1 and L2 projections of an exact solution are recollected. Each term in the obtained multiscale formulations will be verified by means of these numerical experiments.Additionally, the multiscale principles will serve to develop fundamentally new insights into the nature of known discontinuous Galerkin formulations. It will be shown that classical formulations, such as the well known interior penalty method, can be interpreted as a specific fine scale model. It will also be shown that upwind numerical fluxes serve as an impromptu solution for the lack of a volumetric fine scale model.Finally, the DG-RVMS framework will be utilized for a more complex partial differential equation. Thereby its effectiveness as a multiscale model can be assessed. For this purpose the nonlinear transient Burgers equation will be considered. Numerical experiments will consistently show a near order of magnitude decrease in the error in total solution energy. The experiments will make use of discretizations of polynomial order p = 2 to p = 4. The increase of performance is observed for all polynomial orders, and for the complete range ofdegrees of freedom in the convergence study.
机译:在这项工作中,在不连续的Galerkin框架中提出了基于残差的变分多尺度方法。这种所谓的“ DG-RVMS”策略是在更复杂的情况下开发,广泛验证和测试的。拟议的DG-RVMS范式包括三个主要组成部分。首先,perelement弱形式是通过操纵精细尺度元素边界项来耦合的。接下来,引入了精细尺度的表面模型,以使整体粗糙尺度的弱公式具有适当的位置。最后,可以利用粗尺度跳变和残差来制定新的体积细尺度模型。该体积精细比例模型将精细比例效果合并到粗糙比例解决方案上。验证工作将集中在涉及线性微分方程的多个一维测试用例上。特别是将研究泊松方程和对流扩散问题。在受控环境中,可以通过对精细比例项使用显式表达式来随意操纵有限元解决方案。例如,重新收集精确解的H1和L2投影。将通过这些数值实验来验证所获得的多尺度配方中的每个术语。此外,多尺度原理将有助于从根本上对已知的不连续Galerkin配方的性质发展出新的见解。将显示经典公式,例如众所周知的内部罚分法,可以解释为特定的精细比例模型。还将显示,迎风数值通量是缺少体积精细比例模型的即兴解决方案。最后,DG-RVMS框架将用于更复杂的偏微分方程。因此,可以评估其作为多尺度模型的有效性。为此,将考虑非线性瞬态Burgers方程。数值实验将始终显示总溶液能量误差降低近一个数量级。实验将利用多项式阶数p = 2到p = 4的离散化。在收敛性研究中,对于所有多项式阶数以及完整的自由度范围,都可以观察到性能的提高。

著录项

  • 作者

    Stoter, Stein (author);

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号